pycmdparse Documentation
Release 1.0.0

Eric Ace

Mar 17, 2019

Contents

A simple example 3
Terms 7
Features 9
The code 11
Docs 13
5.1 Developer Guide L e e e e e e e e 13

Search Page 25

pycmdparse Documentation, Release 1.0.0

pycmdparse is a small library to help developers of Python console utilities parse the command line and display usage
instructions. It’s goal is to enable this with a minimum of programming. The Use Case for a console utility developer
is:

1. Import this package and subclass the CmdLine class in your utility code
2. Initialize the yam1_def field (defined in the base class) with a yaml definition of options/params/usage
3. Call the parse function of the base class to parse the command line.

If successful, the parse function injects fields into your subclass - one for each option defined in the yaml spec. Your
utility then accesses the injected fields to get the values provided by the user

If there is an error parsing the command line, or the user specifies -h or —help, your utility calls the base class
display_info method to display the errors or display usage instructions - as specified in the yaml.

Contents 1

pycmdparse Documentation, Release 1.0.0

2 Contents

CHAPTER 1

A simple example

This is an illustrative console utility called “os-info”:

class MyCmdLine (CmdLine) :
yaml_def = '''
utility:
name: os—-info

summary: >
Gets operating system info, and saves it to
the specified file.

positional_params:
params: FILE
text: >
Writes the information to FILE

supported_options:

- category:
options:
— name : verbose
short: v
long : verbose
opt : bool
help: >

Provides additional (more verbose) information

examples:
- example: os—info -v my-outfile
explanation: >
Gets verbose operating system info and writes
it to 'my-outfile' in the current working directory

Fields will be injected if not defined. If defined, their

(continues on next page)

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

values will be set by the parser. The 'name' key in the
yaml above specifies the Python field name to inject into
the subclass for each option your utility supports

verbose = None
if _ name_ == "_ _main_ ":
parse_result = MyCmdLine.parse(sys.argv)
if parse_result.value != ParseResultEnum.SUCCESS.value:
MyCmdLine.display_info (parse_result)
exit (1)

import platform
with open (MyCmdLine.positional_params[0], "w") as f:

f.write("sys info: \n" % str(platform.uname()))
if MyCmdLine.verbose:
f.write("python version: \n" %

platform.python_version())

If the user entered the following on the command line:

os—-info —--help

They would see the following displayed on the console:

Gets the operating system version, and saves it to the
specified file.

Usage:

os—info [-v,-——verbose] FILE
Writes the information to FILE.
Options and parameters:

-v, ——verbose Optional. Provides additional (more verbose)
information

Examples:
os—info -v my-outfile

Gets verbose operating system info and writes it
to 'my-outfile' in the current working directory

If the user entered the following on the command line:

os—info —-purple

They would see the following displayed on the console:

Error:

Unsupported option: '—-purple’

(continues on next page)

4 Chapter 1. A simple example

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

For usage instructions,

try:

os—info -h

(or os—-info —-help)

Obviously with such a simple example, you wouldn’t need pycmdparse. The library is intended to help with

complex command lines.

pycmdparse Documentation, Release 1.0.0

6 Chapter 1. A simple example

CHAPTER 2

Terms

1. arg: An arg is a token on the command line. The first arg is the command name

2. option: An option is an argument used by the command. E.g.: —verbose. Options begin with a dash or a double
dash

3. parameter: A parameter is a value that is used by an option or by the command. In this expression:
--max—threads=100, —max-threads is the option and /00 is the parameter. Positional parameters are pa-
rameters used by the command that are not paired with an option. In this expression: my-command FOO,
FOO is a positional param.

pycmdparse Documentation, Release 1.0.0

8 Chapter 2. Terms

CHAPTER 3

Features

Uses yaml to define command-line requirements and usage instructions
Supports two types of options:

— A bool option is true or false. Sometimes referred to as a switch. E.g.: -v, or —verbose. The value is false
if omitted from the command line, and true if present on the command line

— A param option takes one or more parameters. The default is a single param option. E.g.: —threads=100.
A param option can be defined to accept an exact number of parameters, up to a specified number of
parameters, or can accept no limit to the number of parameters

Supports short-form options (-v) and long-form options (—verbose). The yaml can specify both or either.

Supports required and non-required options. Non-required options can have a default specified in the yaml. If a
required option is omitted from the command line, then it is a parse error. If a non-required option with a default
is not specified on the command line, then the option value is the default in the yaml

parameters can be expressed as follows on the command line: ——max-threads=100. ——max-threads
100. -t=100. -t 100. All are equivalent.

Supports concatenation of short-form options. E.g.: —v -t -c and —vtc are handled identically. In addition,
if a short-form option takes a value, it can also be concatenated. These are the same: -v -t -c=100 and
-vtc=100 -vtc 100 -v -t -c 100

Provides basic data typing of parameters: int, bool, float, date. If you specify a data type then the parser validates
the parameter so you don’t have to

For options taking multiple params, these can be provided on the command line this way: ——takes-three
X Y Zorthis way: ——takes—-three X --takes-three Y --takes-three 7

Supports the double dash (“-") option to indicate the beginning of positional parameters
Parses positional parameters and provides them in a list
Enables a custom validation call-back for you to perform any parameter validations not provided out of the box

Displays usage instructions in a generally consistent form - fitted to the width of the console window so you
don’t have to spend time on formatting help text in your utility

pycmdparse Documentation, Release 1.0.0

 Enables you to categorize your supported options. These categories are displayed in the usage instructions. So
if you have groups or related sets of options, you can categorize them for readability,

* Enables you to explicitly define a brief usage scenario - like “my-utility [options] FILE”. If you don’t explic-
itly define a brief usage scenario, pycmdparse builds one for you from the defined supported options and
positional params.

* Injects fields into your subclass based on the defined options so you have an intuitive way of accessing the
command line values. Boolean options are python bool fields. Single-value param options are scalars. Multi-
valued param options and positional params are lists.

10 Chapter 3. Features

CHAPTER 4

The code

https://github.com/aceeric/pycmdparse

11

https://github.com/aceeric/pycmdparse

pycmdparse Documentation, Release 1.0.0

12 Chapter 4. The code

CHAPTER B

Docs

5.1 Developer Guide

5.1.1 Getting Started

To use pycmdparse, you subclass the CmdLine class. The minimum requirement is to initialize the yam1l_def base
class field with a YAML string that defines the options and usage instructions for your utility. The intro section has an

example of that. Here it is repeated.

This is an illustrative console utility called “os-info”. This utility displays some information about the operating

environment. This code would be in a python file in your utility:

import sys

from pycmdparse.abstract_opt import AbstractOpt
from pycmdparse.cmdline import CmdLine

from pycmdparse.opt_acceptresult_enum import OptAcceptResultEnum

from pycmdparse.parseresult_enum import ParseResultEnum
from pycmdparse.positional params import PositionalParams

class MyCmdLine (CmdLine) :
yaml_def = '"'
utility:
name: os—-info

summary: >
Gets operating system info, and saves it to
the specified file.

positional_params:
params: FILE
text: >
Writes the information to FILE

(continues on next page)

13

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

supported_options:

- category:
options:
— name : verbose
short: v
long : verbose
opt : bool
help: >

Provides additional (more verbose) information

examples:
- example: os—info -v my-outfile
explanation: >
Gets verbose operating system info and writes
it to 'my-outfile' in the current working directory

verbose = None

if name == "__main_ ":

parse_result = MyCmdLine.parse(sys.argv)

if parse_result.value != ParseResultEnum.SUCCESS.value:
MyCmdLine.display_info (parse_result)
exit (1)

import platform
with open (MyCmdLine.positional_params[0], "w") as f:
f.write("sys info: \n" % str(platform.uname()))
if MyCmdLine.verbose:
f.write("python version: \n" %
platform.python_version())

Key points:
1. The yaml_def base class field is initialized with yaml that defines the usage and options for the utilty

2. The main code calls the MyCmdLine.parse () method, passing sys.argv froim the Python interpreter.
This initializes the base class from the yaml and then parses the command line in accordance with the yaml.

3. If the parse returns ParseResultEnum.SUCCESS then the code can access command line values using
injected fields. In the example above, verbose is an injected field. (It’s explicitly declared to avoid reference
errors from the IDE.)

4. If the parse returns anything else, then the utility passes the return result to the base class display_info
method to either display parse errors, or usage instructions.

5.1.2 YAML

Here is an empty schema for pycmdparse. The elipsis (...) indicate that a value is required. This shows the
structure of the yaml. Below, each section is documented. Note - every top-level section in the yaml is optional.

utility:
name:
require_args:
summary: >

usage: >

(continues on next page)

14 Chapter 5. Docs

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

positional_params:
params:
text: >

supported_options:
— category:
options:
- name
short
long
hint
opt
required
datatype
multi_type:
count
help: >

details: >
examples:
- example:

explanation: >

addendum: >

Here are the details on the schema. In this section, example content will be provided, replacing the elipsis above. The
content will be for a hypothetical foo-utility.

Utility

utility:
name: foo-utility
require_args: true

The name key identifies the utility name - what users will invoke on the command line. In this case, it is the foo-utility.
In the usage instructions, this utility name displays at the top of the usage instructions, with a double underline.

If you want to require options and/or positional params, specify require_args: true. Then, if the user just offers the
utility name on the command line with no args, the parser will return a parse result of SHOW_USAGE. If require_args
is false in the yaml or omitted, then if the user simply types the utility name on the command line, this will not cause
a parse error. This could be useful in a situation where your utility has defaults for every single command line
option/param - or - doesn’t support any command line options/params.

Summary

summary: >
The foo-utility searches the internet for all available
information about the etymology of 'foo'. (See
https://en.wikipedia.org/wiki/Foobar). Various options and
parameters can be provided as command line arguments to tailor
the behavior of the utility.

Provide a top-line summary to help the user quickly understand the purpose of the utility. This displays to the console
under the program name in the help.

Usage

5.1. Developer Guide 15

pycmdparse Documentation, Release 1.0.0

usage: >
foo-utility [options] PREVIOUSFOO

The usage section is a really brief synopsis of what the command line looks like to invoke the utility. If there is no
usage section, then usage is generated to the console by pycmdparse from the defined options/parameters as well as the
positional_params. (An example of pycmdparse-generated usage is shown in the positional params section below.)

This example provides an explicit usage section. So, whatever is provided here is displayed verbatim.

Positional Params

positional_params:

params: PREVIOUSFOO

text: >
PREVIOUSFOO is an optional file spec. If the results of a prior
foo analysis are available in the PREVIOUSFOO file, then the
utility only displays the deltas between the current foo
etymology, and the etymology saved in the specified file.
This parameter can be an absolute - or relative - file
specifier.

The existence of the positional_params entry causes positional param parsing. Positional params are everything after
“~ on the command line, or, everything on the command line after all known options are parsed, or, everything on the
command line if there are no defined options.

The positional_params entry contains two sub-entries: params, and fext. Both are used only to format usage to the
console - and only if the usage entry above is not provided. The value of the params key is appended to the supported
options, and the text is appended to that, on a separate line. So the pycmdparse-generated usage - including supported
options and positional params - for the foo-utility - would print to the console as follows, using the positional_params
spec in this yaml:

Usage:
foo-utility [-v,-—-verbose] [-h,-—help]
[-d, ——depth <n>]
[-e, ——exclude <terml ...>] PREVIOUSFOO

PREVIOUSFOO is an optional file spec. If the results of a prior foo
analysis are available in the PREVIOUSFOO file, then the utility
only displays the deltas between the current foo etymology, and the
etymology saved in the specified file. This parameter can be an
absolute - or relative - file specifier.

Note that the params entry has no meaning to pycmdparse. It’s only a mnemonic for the user.

Supported Options

supported_options:
- category: Common options

options:

- name : verbose
short HEAY
long : verbose
opt : bool
help: >

Causes verbose output. Can result in significant volumes of
information to be emanated to the console. Use with caution.
— name : help

(continues on next page)

16 Chapter 5. Docs

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

short Hl o}
long : help
opt : bool
help: >

Displays this help text.
- category: Less common options

options:

— name : depth
short : d
long : depth
hint :n
required : false
datatype : int
opt : param
default HE
help: >

Specifies the recursion level of the search. If not
specified on the command line, then a default value
of one (1) is used. Increasing the recursion level
can provide a better analysis result, but can
significantly increase the processing time.

The max value is 92.

- name : exclude
short e
long : exclude
hint ¢ terml
required : false
opt : param
multi_type: no-limit
count
help: >

Specifies a list of terms that cause the utility

to stop recursing at any given level. Multiple terms
can be provided. There is no limit to the number

of terms.

The supported_options entry defines the options and associated params for the utility. If this entry exists, then option
parsing occurs. Otherwise, no option parsing occurs. All options support a single-character (short) form, and/or a long
form. Example: —t, and ——t imeout. Options are case-sensitive. There are two types of options:

An example of a bool is: ——verbose. It is False by default, and only True if provided on the command line. It is
always optional, since it always has a value.

A param option is an option taking one or more params, like ——filelist FILEl FILE2 FILE3,or ——file
FILE. A param option’s parameters are terminated differently depending on the param type. More details are provided
below.

Param options are either required, or not required. Required options that are not provided on the command line cause
a parse error. Non-required options can have a default in the yaml. Non-required options that are not provided on the
command line and that don’t have default specified have a value of None upon conclusion of arg parsing.

All options must belong to a category. If the category entry has a value, then it is displayed to the console when
usage instructions are displayed. Otherwise the presence of the category has no effect. The purpose is to support
categorization of options, which some complex utilities will want. The fact that it is required in the yaml just simplifies
the pycmdparse yaml handling. Multiple categories are supported but not required.

The example foo-utility supports the following options: ——verbose, ——exclude, and ——depth. ——verbose is
boolean, ——exclude is param accepting multiple values, and ——depth is param accepting only a single value.

5.1. Developer Guide 17

pycmdparse Documentation, Release 1.0.0

Each option is an array of key/value entries. The supported keys are listed for each option type. If a key is omitted, its
value is None. Each option requires either a short-form _or_ long-form option key. Both are allowed.

The table below describes the behavior of each of the keys used to define an option:

key | description

namg Optional. The Python field name that you want injected into your subclass to hold the option value. Must
be a valid Python identifier. If not supplied, then pycmdparse will use either the long key, or the short
key for the field to inject. If the long key is used, dashes in the long key are replaced by underscores to try
to make a valid identifier. If an invalid identifier is defined explicitly or through derivation from the long or
short key, an exception is thrown.

short| The short (single-character) option. E.g. “v”” will match —v on the command line. Don’t include the dash in
the yaml.

long | The long option. E.g. “verbose” will match ——verbose on the command line. Either a short - or a long -
option is required. Both can be provided. Don’t include the double-dash in the yaml.

opt | The option type. Either bool, or param. If omitted, then the option is defined as a param option taking
exactly one value. E.g.: ——max-threads=1

hint | An optional mnemonic to the user for param-type options. E.g., if you have an option
-—timeout—-interval, you might define a hint of “n” to let the user know via the usage instructions
that a number is expected. If you do this in the yaml, then in the usage instructions, the option displays like
this: -t, —-—-timeout-interval <n>

re- | true or false indicating that the option is required - or not - on the command line. If omitted from the yaml,
quired the option is not required to be provided by the user. If the option is required, but not provided, then a parse
error is returned by the parse function.

de- | Non-required options can have a default. If the option is not provided on the command line, it is initialized
fault| with this default value. A non-required option that is not provided and doesn’t have a default gets a value of
None injected into your class. If the option is a mult-type (see below) then you can initialize with an array
using valid yaml array syntax.

datatyp&n optional data type. If you provide a data type then the params are validated against the specified type.
It’s pretty limited at present: int float, bool, and date are supported. A date param matches YYYY-MM-DD,
or MM-DD-YYY'Y with dots, dashes, or slashes as the separator. If omitted, the value is a string.
multi_txpeoptional multi type for param options. Valid values: exactly, at-most, and no—1imit. Works in
tandem with the count key below. If exactly, then exactly <count> params are expected. Some examples are
provided in a later section. If az-most then at most <count> params are parsed. If no-limit, then params are
parsed until the next option is encountered on the command line - or all command line tokens are read.
count See multi-type above.

help | Free-form text describing what the option does.

Details

details: >
The recursion algorithm uses a weighting scheme to determine the
amount of detailed parsing to perform at any given level of the
search hierarchy. The following search terms illustrate the
weighting:

weight term

foo
bar
baz
foobar

Sw N

The details section is just a place to put more detail than seems appropriate in the usage section. Some utilities have
really complex options and parameters. For example, if a parameter value is itself a lookup into a table, or if there are

18 Chapter 5. Docs

pycmdparse Documentation, Release 1.0.0

many many usage scenarios, and so forth.Embedded newlines in the yaml are preserved (e.g. for tabular formatting if
needed.) Otherwise, content is fitted by pycmdparse to the console window width.

Examples

examples:
- example: foo-utility —--verbose --exclude fizzbin frobozz
explanation: >
Performs a full traversal, with detailed diagnostic
information displaying to the console, but terminating
recursion into any hierarchy containing the terms
'fizzbin', or 'frobozz'.

- example: >
foo-utility —--verbose --exclude fizzbin frobozz —-
my-saved-search-file

explanation: >

Same as the example above, but in this case compares the
results determined by the utility to the results previously
generated in the file 'my-saved-search-file' in the current
working directory. Only the deltas display to the console.
(Note - the specified file must adhere to the foo-utility's
stringent formatting requirements.)

— example: foo-utility -d 42
explanation: >
Performs a search with no search term exclusions, and minimal
(non-verbose) console output. But only recurses to
a depth of 42.

The examples entry contains a list of example entries. Examples are just that. They consist of an example key, and an
explanation key. They are displayed below the details section, pretty much as they appear in the yaml.

Addendum

addendum: >
Version 1.2.3, Copyright (C) The Author 2019\n

In the Public Domain\n

Github: https://github.com/theauthor/foo-utility

The addendum section is for copyright, version, author, license, URL, anything else. Content is displayed as is, fitted
to the console window width.

5.1.3 Option Examples

This section presents some examples of defining options in the yaml, and the resulting behavior of the library.

The bare minimum

supported_options:
— category:
options:
- long: max-threads

The only key provided is the long option. So this will match —~—max-threads on the command line, and will be
defined as a param option taking exactly one parameter. So the command line could look like: ~—max—-threads=1,

5.1. Developer Guide 19

pycmdparse Documentation, Release 1.0.0

or ——max-threads 1. If the command line looked like ——max—-threads, that would be a parse error. The field
name injected into your subclass would be: max_threads and it would contain a scalar value. You would access
the value thus:

if cmd line is —--max-threads=1, then prints "Max Threads=1":
print ("Max Threads={}".format (MyCmdLine.max_threads))

A bool, with an explicit name, and both short and long forms

supported_options:
- category:
options:
- name: wax_on
short: w
long : wax-on
opt : bool

Matches ——wax—on and —w on the command line. Always optional on the command line, because bool options are
never required. Has a value of false if omitted from the command line, and a value of true if provided on the command
line. The field name injected into your subclass would be: wax_on as explicitly defined, and it would contain a bool
value, and would never have a value of None. You would access the value thus:

if cmd line is —--wax—-on then prints "Wax On":
if MyCmdLine.wax_on:

print ("Wax On")
else:

print ("Wax Off")

A parm, taking exactly one value

supported_options:

- category:
options:

— name : depth
short : d
long : depth
hint :n

required: false
datatype: int

opt : param
default : 1

In the usage instructions, the option displays like: —d, ——depth <n> indicating that a single parameter is required
that’s probably a number (“n”). Since neither the multi-type key, nor the count key are specified, this defaults to an
EXACTLY ONE param option. Meaning: when the command line is parsed, exactly one param is expected. So: —d
1 would be valid. But this would be a parse error: —d.

Let’s say you didn’t define positional params. In this case, -d 4 5 6 would also be a parse error. The reason is,
the parser would initialize your option with the value 4, then “5” and “6” would not belong to anything so that would
trigger a parse error. If, on the other hand, you did define positional params, then “5” and “6” would get assigned to
the positional params because the rule is - after all options are parsed, everything left goes into positional params.

If the command line looked like this: —d=123 then you would access the value thus:

print ("Your depth plus ten is: " + str(MyCmdLine.depth + 10))

A parm, taking exactly three values

20 Chapter 5. Docs

pycmdparse Documentation, Release 1.0.0

supported_options:

- category:
options:
- name : takes_3
short HER
long : takes-three
opt : param
multi_type: exactly
count : 3
default
- ONE
- TWO
— THREE

This example is a param option taking three params. It’s initialized with defaults. Since required is not specified,
the option is not required on the command line. Let’s say, in this example, that positional params are also defined.
Then this is a valid command line: ——takes-three A B C 'this is a positional param'. The parse
stops as soon as it receives three params. You would access the field in your subclass like this:

if len (MyCmdLine.takes_3) >= 1:

print ("First Param: " + MyCmdLine.takes_3[0])
if len (MyCmdLine.takes_3) >= 2:

print ("Second Param: " + MyCmdLine.takes_3[1])
if len (MyCmdLine.takes_3) >= 3:

print ("Third Param: " + MyCmdLine.takes_3[2])

(Note - the following command-line form is also supported for options taking multiple params: ——takes-three A
-—takes-three B --takes-three C.)One additional thing to note about EXACTLY params is - the tokens
pulled from the command line are not examined. So, if the command line looks like: ——takes-three A —--foo
——Dbar then the value of the option willbe ["A", "--foo", "—--bar"]

The reiterate, the field value injected into your subclass is a scalar for cases where the param only takes one value,
and a list for cases where the param takes more than one value - as defined in the yaml. In list cases, if no params are
provided and no default is defined and the option is not required, then the field value will be an empty list, vs. None.

A parm, taking at most three values

supported_options:

— category:

options:

— name . at_most_3
long : at-most-3
opt : param
multi_type: at-most
count : 3

For at-most and no-1imit multi-type params, the presence of the next option stops the parser from assigning
parameter values to the current option. So, the following command line would be valid: ——at-most-3 ONE TWO
—— POSITIONAL. Or, if there was another option ——foo that was supported, then this would be a valid command
line: ——at-most-3 ONE TWO --foo. In this case: ——at-most-3 ONE TWO THREE POSITIONAL, the
param picks up the values “ONE”, “TWO”, and “THREE” and stops gathering tokens from the command line, leaving
the value “POSITIONAL” for positional params.

A parm, taking unlimited values

supported_options:
— category:

(continues on next page)

5.1. Developer Guide 21

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

options:
- long : touch-type
opt : param

multi_type: no-limit

In this example, the command line can contain any number of params for this option, and as for the at -most case,
the next option, or the positional params option terminates collection of params:

—-—touch-type The quick brown fox jumps over the lazy dog —-- positional params

5.1.4 Custom Validation

You will likely have custom validation that you need to perform on your command line options. For example, you
might enforce that an option value belongs to a list of valid values. Or you might require a file to exist, etc.

pycmdparse provides a validator call back. If you define a function in your subclass that matches this signature:

@classmethod
def validator(cls, to_validate):

...then once all built-in validations have passed, your validator will be called to validate each option, as well as the
positional params. Here’s a skeleton showing how to get started:

@classmethod
def validator(cls, to_validate):
some_error_condition = False

if isinstance(to_validate, PositionalParams) :
if some_error_condition:
return OptAcceptResultEnum.ERROR, "TODO message"
elif isinstance(to_validate, AbstractOpt):
if to_validate.opt_name == "your_field":
if some_error_condition:
return OptAcceptResultEnum.ERROR, "TODO message"
return None,

You can see that there is one if block to validate the positional params, and one if block to validate options. Your
callback will be called once for each option, and once for the list of positional params. So, for example, you could
enforce a specific number of positional params, etc.

Your callback is expected to return a tuple. If your validation fails, then element zero is Opt AcceptResultEnum.
ERROR as shown, and element one is a message. If there is no error, then a tuple is returned with None in element
ZEero.

If your callback returns an error, then you’ll pick that up in the return value from your call to the parse function, and
it will be handled the same way as if the library determined that the command line didn’t parse successfully.

Example

class MyCmdLine (CmdLine) :
yaml_def = '''
utility:
name: my-util
supported_options:
- category:
options:
- name . it_hurts

(continues on next page)

22 Chapter 5. Docs

pycmdparse Documentation, Release 1.0.0

(continued from previous page)

long : it-hurts
opt : param
multi_type: exactly
count HE

it_hurts = None

@classmethod
def validator(cls, to_validate):
if isinstance(to_validate, AbstractOpt):
if to_validate.opt_name == "it_ hurts":
if it_hurts == "When I go like this":
return OptAcceptResultEnum.ERROR,
"Don't go like that"
return None,
if _ name_ == "__main_ ":
parse_result = MyCmdLine.parse(sys.argv)
if parse_result.value != ParseResultEnum.SUCCESS.value:
MyCmdLine.display_info (parse_result)
exit (1)

In this example, the following command line:

my-util —--it-hurts='When I go like this'

Would produce the following output:

Error:

Don't go like that

For usage instructions, try: my-util -h (or my-util —-help)

5.1. Developer Guide 23

pycmdparse Documentation, Release 1.0.0

24 Chapter 5. Docs

CHAPTER O

Search Page

e search

25

	A simple example
	Terms
	Features
	The code
	Docs
	Developer Guide

	Search Page

